For given
A and
X is
LOGA(X)=LN(X)/LN(A) where the
LN function is
natural logarithm. The most useful numbers for us in this connection are
LN(2) and
LN(10). There are two simple function returning first
200 decimal digits of these constants. For their computation I used an algorithm from
Natural logarithm, see the
LN2P function. And the program for automatic creating a function from value of constant, see
Technique: Beforehand computed constants.
LN2: procedure; V = ''
V = V  0.69314718055994530941723212145817656807
V = V  5500134360255254120680009493393621969694
V = V  7156058633269964186875420014810205706857
V = V  3368552023575813055703267075163507596193
V = V  0727570828371435190307038623891673471123350
return V

LN10: procedure; V = ''
V = V  2.30258509299404568401799145468436420760
V = V  1101488628772976033327900967572609677352
V = V  4802359972050895982983419677840422862486
V = V  3340952546508280675666628736909878168948
V = V  2907208325554680843799894826233198528393505
return V

CONNECTIONS