Quicksort

PROBLEM
Given an array A. of N elements the result of sorting the array in place is to arrange elements of A. so that

A.1<=A.2<=...<=A.N

ALGORITHM
Quicksort by C. A. R. Hoare is a sorting algorithm in place. It has a worst-case running time that is O(N**2); its expected running time is O(N*lgN).

PRACTICE
It is often the best practical choice for sorting because it is remarkably efficient on the average. The following table compares four sorting algorithms. The A. array includes the integers in the range 1 to Max=10,100,1000,40000.

Running time in seconds for N=10000
Algorithm Max = 100 Max = 1000 Max = 40000 Max = 99999
QUICKSORT 4.66  4.53  4.89  4.59
HEAPSORT 10.26  10.67  11.58  11.18
SHELLSORT  7.45   8.89  10.58  10.13
COUNTING_SORT  1.88   1.95   7.93  31.85

IMPLEMENTATION
Unit: nonrecursive internal subroutine

Global variables: array A. of arbitrary elements

Parameter: a positive integer N - number of elements in A.

Result: Reordering of input array such that

A.1<=A.2<=...<=A.N

 QUICKSORT: procedure expose A. parse arg N S = 1; StackL.1 = 1; StackR.1 = N do until S = 0   L = StackL.S; R = StackR.S; S = S - 1   do until L >= R     I = L; J = R; P = (L + R) % 2     if A.L > A.P       then do; W = A.L; A.L = A.P; A.P = W; end     if A.L > A.R       then do; W = A.L; A.L = A.R; A.R = W; end     if A.P > A.R       then do; W = A.P; A.P = A.R; A.R = W; end     X = A.P     do until I > J       do I = I while A.I < X; end       do J = J by -1 while X < A.J; end       if I <= J         then do           W = A.I; A.I = A.J; A.J = W           I = I + 1; J = J - 1         end     end     if J - L < R - I       then do         if I < R           then do             S = S + 1; StackL.S = I; StackR.S = R           end         R = J       end       else do         if L < J           then do             S = S + 1; StackL.S = L; StackR.S = J           end         L = I       end   end /* until L >= R */ end /* until S = 0 */ return

For sorting in descending order, you need only change the red coloured statements

 do I = I while A.I > X; end       do J = J by -1 while X > A.J; end

CONNECTIONS
Sorting Problem
Counting sort
Heapsort
Shellsort
Merging

Literature
Cormen T. H., Leiserson Ch. E., Rivest R. L. Introduction to Algorithms
The MIT Press, Cambridge, 1990
Sedgewick R. Algorithms
Wirth N. Algorithms and data structure
New Jersey, Prentice Hall, Inc., Engelwood Cliffs, 1986

Acknowledgement
I changed the test from Max=10 ... 40000 to Max=100 ... 99999. Thanks for idea go to Walter Pachl.

Note
This test ran in the Windows 2000 Professional environment on the computer with 132MB RAM and processor x86Family 6 Mode 6 Stepping 5.

 cover contents index main page